Axiomatic set theory à la Dijkstra and Scholten

Ernesto Acosta, Bernarda Aldana, Jaime Bohórquez, Camilo Rocha

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva


The algebraic approach by E.W. Dijkstra and C.S. Scholten to formal logic is a proof calculus, where the notion of proof is a sequence of equivalences proved – mainly – by using substitution of ‘equals for equals’. This paper presents Set, a first-order logic axiomatization for set theory using the approach of Dijkstra and Scholten. What is novel about the approach presented in this paper is that symbolic manipulation of formulas is an effective tool for teaching an axiomatic set theory course to sophomore-year undergraduate students in mathematics. This paper contains many examples on how argumentative proofs can be easily expressed in Set and points out how the rigorous approach of Set can enrich the learning experience of students. The results presented in this paper are part of a larger effort to formally study and mechanize topics in mathematics and computer science with the algebraic approach of Dijkstra and Scholten.

Idioma originalInglés
Título de la publicación alojadaAdvances in Computing - 12th Colombian Conference, CCC 2017, Proceedings
EditoresAndres Solano, Hugo Ordonez
EditorialSpringer Verlag
Número de páginas17
ISBN (versión impresa)9783319665610
EstadoPublicada - 2017
Evento12th Colombian Conference on Computing, CCC 2017 - Cali, Colombia
Duración: 19 sep. 201722 sep. 2017

Serie de la publicación

NombreCommunications in Computer and Information Science
ISSN (versión impresa)1865-0929


Conferencia12th Colombian Conference on Computing, CCC 2017


Profundice en los temas de investigación de 'Axiomatic set theory à la Dijkstra and Scholten'. En conjunto forman una huella única.

Citar esto