Wide machine learning algorithms evaluation applied to ECG authentication and gender recognition

Jose Luis Cabra, Diego Mendez, Luis C. Trujillo

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

8 Citas (Scopus)

Resumen

ECG signals have been widely studied for knowing heart behavior and following cardiac abnormalities. Last years have emerged new applications where ECG has being used in cryptography and biometrics. The purpose in this paper center around perform two independent experiments taking advantage of the ECG properties. The first experiment is about person authentication and the second experiment covers gender recognition. Both tests are performed extracting the same features and evaluating the classification accuracy with several machine learning algorithms sensing the ECG signals in different body positions. ECG signal contains properties like liveness detection, ubiquity, difficulty of being copied, continuity, and reclaims the mandatory user presence. These properties makes ECG study having the potential of being embedded for smartphone applications in the Internet of Things era. The best accuracy score is over the 98% for ECG authentication and 94% for gender recognition; as the best of our knowledge there is no ECG gender recognition with the algorithms studied in this paper.

Idioma originalInglés
Título de la publicación alojadaICBEA 2018 - Proceedings of 2018 2nd International Conference on Biometric Engineering and Applications
EditorialAssociation for Computing Machinery
Páginas6-12
Número de páginas7
ISBN (versión impresa)9781450363945
DOI
EstadoPublicada - 16 may. 2018
Evento2nd International Conference on Biometric Engineering and Applications, ICBEA 2018 - Amsterdam, Países Bajos
Duración: 16 may. 201818 may. 2018

Serie de la publicación

NombreACM International Conference Proceeding Series

Conferencia

Conferencia2nd International Conference on Biometric Engineering and Applications, ICBEA 2018
País/TerritorioPaíses Bajos
CiudadAmsterdam
Período16/05/1818/05/18

Huella

Profundice en los temas de investigación de 'Wide machine learning algorithms evaluation applied to ECG authentication and gender recognition'. En conjunto forman una huella única.

Citar esto