Visual model feature tracking for UAV control

Iván Fernando Mondragón, Pascual Campoy, Juan Fernando Correa, Luis Mejias

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

32 Citas (Scopus)

Resumen

This paper explores the possibilities to use robust object tracking algorithms based on visual model features as generator of visual references for UAV control. A Scale Invariant Feature Transform (SIFT) algorithm is used for detecting the salient points at every processed image, then a projective transformation for evaluating the visual references is obtained using a version of the RANSAC algorithm, in which a series of matched key-points pairs that fulfill the transformation equations are selected, rejecting otherwise the corrupted data. The system has been tested using diverse image sequences showing its capability to track objects significantly changed in scale, position, rotation, generating at the same time velocity references to the UAV flight controller. The robustness our approach has also been validated using images taken from real flights showing noise and lighting distortions. The results presented are promising in order to be used as reference generator for the control system.

Idioma originalInglés
Título de la publicación alojada2007 IEEE International Symposium on Intelligent Signal Processing, WISP
DOI
EstadoPublicada - 2007
Publicado de forma externa
Evento2007 IEEE International Symposium on Intelligent Signal Processing, WISP - Alcala de Henares, Espana
Duración: 03 oct. 200705 oct. 2007

Serie de la publicación

Nombre2007 IEEE International Symposium on Intelligent Signal Processing, WISP

Conferencia

Conferencia2007 IEEE International Symposium on Intelligent Signal Processing, WISP
País/TerritorioEspana
CiudadAlcala de Henares
Período03/10/0705/10/07

Huella

Profundice en los temas de investigación de 'Visual model feature tracking for UAV control'. En conjunto forman una huella única.

Citar esto