Unsupervised learning applied in MER and ECG signals through Gaussians mixtures with the Expectation-Maximization algorithm and Variational Bayesian Inference

Hernan Dario Vargas Cardona, Alvaro Angel Orozco, Mauricio A. Alvarez

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

Automatic identification of biosignals is one of the more studied fields in biomedical engineering. In this paper, we present an approach for the unsupervised recognition of biomedical signals: Microelectrode Recordings (MER) and Electrocardiography signals (ECG). The unsupervised learning is based in classic and bayesian estimation theory. We employ gaussian mixtures models with two estimation methods. The first is derived from the frequentist estimation theory, known as Expectation-Maximization (EM) algorithm. The second is obtained from bayesian probabilistic estimation and it is called variational inference. In this framework, both methods are used for parameters estimation of Gaussian mixtures. The mixtures models are used for unsupervised pattern classification, through the responsibility matrix. The algorithms are applied in two real databases acquired in Parkinson's disease surgeries and electrocardiograms. The results show an accuracy over 85% in MER and 90% in ECG for identification of two classes. These results are statistically equal or even better than parametric (Naive Bayes) and nonparametric classifiers (K-nearest neighbor).

Idioma originalInglés
Título de la publicación alojada2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Páginas4326-4329
Número de páginas4
DOI
EstadoPublicada - 2013
Publicado de forma externa
Evento2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013 - Osaka, Japón
Duración: 03 jul. 201307 jul. 2013

Serie de la publicación

NombreProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (versión impresa)1557-170X

Conferencia

Conferencia2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
País/TerritorioJapón
CiudadOsaka
Período03/07/1307/07/13

Huella

Profundice en los temas de investigación de 'Unsupervised learning applied in MER and ECG signals through Gaussians mixtures with the Expectation-Maximization algorithm and Variational Bayesian Inference'. En conjunto forman una huella única.

Citar esto