Unsupervised Deep Transfer Learning-Based Change Detection for HR Multispectral Images

Sudipan Saha, Yady Tatiana Solano Correa, Francesca Bovolo, Lorenzo Bruzzone

Producción: Contribución a una revistaArtículorevisión exhaustiva

53 Citas (Scopus)

Resumen

To overcome the limited capability of most state-of-the-art change detection (CD) methods in modeling spatial context of multispectral high spatial resolution (HR) images and exploiting all spectral bands jointly, this letter presents a novel unsupervised deep-learning-based CD method that can effectively model contextual information and handle the large number of bands in multispectral HR images. This is achieved by exploiting all spectral bands after grouping them into spectral-dedicated band groups. To eliminate the necessity of multitemporal training data, the proposed method exploits a data set targeted for image classification to train spectral-dedicated Auxiliary Classifier Generative Adversarial Networks (ACGANs). They are used to obtain pixelwise deep change hypervector from multitemporal images. Each feature in deep change hypervector is analyzed based on the magnitude to identify changed pixels. An ensemble decision fusion strategy is used to combine change information from different features. Experimental results on the urban, Alpine, and agricultural Sentinel-2 data sets confirm the effectiveness of the proposed method.
Idioma originalInglés
Páginas (desde-hasta)856-860
Número de páginas5
Publicación IEEE Geoscience and Remote Sensing Letters
Volumen18
N.º5
DOI
EstadoPublicada - 07 may. 2020
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Unsupervised Deep Transfer Learning-Based Change Detection for HR Multispectral Images'. En conjunto forman una huella única.

Citar esto