Understanding Model Predictive Control for Electric Vehicle Charging Dispatch

Cesar Diaz, Andrea Mazza, Fredy Ruiz, Diego Patino, Gianfranco Chicco

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

14 Citas (Scopus)

Resumen

This paper illustrates the principles of Model Predictive Control (MPC) applied to control the dispatch of power to Electric Vehicle (EV) chargers in a charging station. The MPC strategy aims to determine a control signal by following a day-ahead scheduling and minimizing an economic objective function. The strategy works in closed-loop architecture. The MPC calculates an optimal charging sequence at each time step of the prediction horizon, but it applies the control signal only for the first step of the sequence, following a receding horizon strategy. The results of the MPC strategy lead to track a dayahead scheduling by considering uncertainties on the EV arrival state of charge, and generation disturbances. The MPC strategy outcomes are compared with an open-loop strategy, with the target to apply the scheduled power.

Idioma originalInglés
Título de la publicación alojadaProceedings - 2018 53rd International Universities Power Engineering Conference, UPEC 2018
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781538629109
DOI
EstadoPublicada - 20 nov. 2018
Evento53rd International Universities Power Engineering Conference, UPEC 2018 - Glasgow, Reino Unido
Duración: 04 sep. 201807 sep. 2018

Serie de la publicación

NombreProceedings - 2018 53rd International Universities Power Engineering Conference, UPEC 2018

Conferencia

Conferencia53rd International Universities Power Engineering Conference, UPEC 2018
País/TerritorioReino Unido
CiudadGlasgow
Período04/09/1807/09/18

Huella

Profundice en los temas de investigación de 'Understanding Model Predictive Control for Electric Vehicle Charging Dispatch'. En conjunto forman una huella única.

Citar esto