Transitivity of reciprocal networks

Isabel Fernandez, Jorge Finke

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

4 Citas (Scopus)

Resumen

Network models are a useful tool to describe and predict dynamic relationships in large collections of data. Characterizing these relationships helps us to explain the emergence of structure as a systematic deviation from random connectivity. This paper introduces an event-driven model that captures the effects of three simple network formation mechanisms: random attachment (a generic abstraction of how a new incoming node connects to a network), triad formation (how the new node establishes transitive relationships), and network response (the way the overall network reacts to attachments). Our work focuses on the impact of the latter on clustering and degree distributions. We prove that any initial network will reach stationary local clustering coefficients, and obey an extended power law distribution for the in-degree and an exponential distribution for the out-degree. For the in-degree in particular, the response mechanism amplifies the scaling behavior that results from the other two mechanisms.

Idioma originalInglés
Título de la publicación alojada54rd IEEE Conference on Decision and Control,CDC 2015
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas1625-1630
Número de páginas6
ISBN (versión digital)9781479978861
DOI
EstadoPublicada - 08 feb. 2015
Evento54th IEEE Conference on Decision and Control, CDC 2015 - Osaka, Japón
Duración: 15 dic. 201518 dic. 2015

Serie de la publicación

NombreProceedings of the IEEE Conference on Decision and Control
ISSN (versión impresa)0743-1546
ISSN (versión digital)2576-2370

Conferencia

Conferencia54th IEEE Conference on Decision and Control, CDC 2015
País/TerritorioJapón
CiudadOsaka
Período15/12/1518/12/15

Huella

Profundice en los temas de investigación de 'Transitivity of reciprocal networks'. En conjunto forman una huella única.

Citar esto