Training Data Set Assessment for Decision-Making in a Multiagent Landmine Detection Platform

Johana Florez-Lozano, Fabio Caraffini, Carlos Parra, Mario Gongora

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

5 Citas (Scopus)

Resumen

Real-world problems such as landmine detection require multiple sources of information to reduce the uncertainty of decision-making. A novel approach to solve these problems includes distributed systems, as presented in this work based on hardware and software multi-agent systems. To achieve a high rate of landmine detection, we evaluate the performance of a trained system over the distribution of samples between training and validation sets. Additionally, a general explanation of the data set is provided, presenting the samples gathered by a cooperative multi-agent system developed for detecting improvised explosive devices. The results show that input samples affect the performance of the output decisions, and a decision-making system can be less sensitive to sensor noise with intelligent systems obtained from a diverse and suitably organised training set.

Idioma originalInglés
Título de la publicación alojada2020 IEEE Congress on Evolutionary Computation, CEC 2020 - Conference Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781728169293
DOI
EstadoPublicada - jul. 2020
Evento2020 IEEE Congress on Evolutionary Computation, CEC 2020 - Virtual, Glasgow, Reino Unido
Duración: 19 jul. 202024 jul. 2020

Serie de la publicación

Nombre2020 IEEE Congress on Evolutionary Computation, CEC 2020 - Conference Proceedings

Conferencia

Conferencia2020 IEEE Congress on Evolutionary Computation, CEC 2020
País/TerritorioReino Unido
CiudadVirtual, Glasgow
Período19/07/2024/07/20

Huella

Profundice en los temas de investigación de 'Training Data Set Assessment for Decision-Making in a Multiagent Landmine Detection Platform'. En conjunto forman una huella única.

Citar esto