TY - JOUR
T1 - TPEN exerts antitumor efficacy in murine mammary adenocarcinoma through an H 2 O 2 signaling mechanism dependent on caspase-3
AU - Soto-Mercado, Viviana
AU - Mendivil-Perez, Miguel
AU - Urueña-Pinzon, Claudia
AU - Fiorentino, Susana
AU - Velez-Pardo, Carlos
AU - Jimenez-Del-Rio, Marlene
N1 - Publisher Copyright:
© 2018 Bentham Science Publishers.
PY - 2018
Y1 - 2018
N2 - Background: Breast cancer is the second most common cancer worldwide. N, N, N’, N’-Tetrakis (2-pyridylmethyl)-ethylenediamine (TPEN) is a lipid-soluble zinc metal chelator that induces apoptosis in cancer cells through oxidative stress (OS). However, the effectiveness and the mechanisms involved in TPENinduced cell death in mammary adenocarcinoma cells in vitro and in vivo are still unclear. Objective: This study aimed to evaluate the cytotoxic effect of TPEN in mouse embryonic fibroblasts (MEFs, as normal control cells) and mammary adenocarcinoma cancer cells (TS/A cells) in vitro and in a mammary tumor model in vivo. Methods: Cells were treated with TPEN (0-3 μM), and changes in nuclear chromatin and DNA, mitochondrial membrane potential (ΔΨm), and intracellular reactive oxygen species (ROS) levels were determined by both fluorescence microscopy and flow cytometry. Cell proliferation and the cell cycle were also analyzed. Cellular markers of apoptosis were evaluated by Western blot. Finally, the effect of TPEN in a mammary adenocarcinoma tumor model in vivo was determined by immunohistological analyses. Results: TPEN induced apoptosis in TS/A cells in a dose-dependent manner, increasing nuclear chromatin condensation, DNA fragmentation, cell cycle arrest and ΔΨm loss. Additionally, TPEN increased dichlorofluorescein fluorescence (DCF+) intensity, indicative of ROS production; increased DJ-1-Cys106-sulfonate expression, a marker of intracellular H2O2 stress; induced p53 and PUMA upregulation; and activated caspase-3. Moreover, TPEN induced mammary cancer cell elimination and tumor size reduction in vivo 48 h after treatment through an OS-induced apoptotic mechanism. Conclusion: TPEN selectively induces apoptosis in TS/A cells through an H2O2-mediated signaling pathway. Our findings support the use of TPEN as a potential treatment for breast cancer.
AB - Background: Breast cancer is the second most common cancer worldwide. N, N, N’, N’-Tetrakis (2-pyridylmethyl)-ethylenediamine (TPEN) is a lipid-soluble zinc metal chelator that induces apoptosis in cancer cells through oxidative stress (OS). However, the effectiveness and the mechanisms involved in TPENinduced cell death in mammary adenocarcinoma cells in vitro and in vivo are still unclear. Objective: This study aimed to evaluate the cytotoxic effect of TPEN in mouse embryonic fibroblasts (MEFs, as normal control cells) and mammary adenocarcinoma cancer cells (TS/A cells) in vitro and in a mammary tumor model in vivo. Methods: Cells were treated with TPEN (0-3 μM), and changes in nuclear chromatin and DNA, mitochondrial membrane potential (ΔΨm), and intracellular reactive oxygen species (ROS) levels were determined by both fluorescence microscopy and flow cytometry. Cell proliferation and the cell cycle were also analyzed. Cellular markers of apoptosis were evaluated by Western blot. Finally, the effect of TPEN in a mammary adenocarcinoma tumor model in vivo was determined by immunohistological analyses. Results: TPEN induced apoptosis in TS/A cells in a dose-dependent manner, increasing nuclear chromatin condensation, DNA fragmentation, cell cycle arrest and ΔΨm loss. Additionally, TPEN increased dichlorofluorescein fluorescence (DCF+) intensity, indicative of ROS production; increased DJ-1-Cys106-sulfonate expression, a marker of intracellular H2O2 stress; induced p53 and PUMA upregulation; and activated caspase-3. Moreover, TPEN induced mammary cancer cell elimination and tumor size reduction in vivo 48 h after treatment through an OS-induced apoptotic mechanism. Conclusion: TPEN selectively induces apoptosis in TS/A cells through an H2O2-mediated signaling pathway. Our findings support the use of TPEN as a potential treatment for breast cancer.
KW - Apoptosis
KW - Caspase-3
KW - Hydrogen peroxide
KW - Mammary adenocarcinoma
KW - Mouse embryonic fibroblasts
KW - TPEN
UR - http://www.scopus.com/inward/record.url?scp=85061996142&partnerID=8YFLogxK
U2 - 10.2174/1871520618666180426111520
DO - 10.2174/1871520618666180426111520
M3 - Article
C2 - 29697031
AN - SCOPUS:85061996142
SN - 1871-5206
VL - 18
SP - 1617
EP - 1628
JO - Anti-Cancer Agents in Medicinal Chemistry
JF - Anti-Cancer Agents in Medicinal Chemistry
IS - 11
ER -