Toward High-Capacity Battery Anode Materials: Chemistry and Mechanics Intertwined

MT McDowell, FJQ Cortes, AC Thenuwara, JA Lewis

Producción: Contribución a una revistaArtículorevisión exhaustiva

30 Citas (Scopus)

Resumen

Lithium metal and lithium-rich alloys are high-capacity anode materials that could boost the energy content of rechargeable batteries. However, their development has been hindered by rapid capacity decay during cycling, which is driven by the substantial structural, morphological, and volumetric transformations that these materials and their interfaces experience during charge and discharge. During these transformations, the interplay between chemical/structural changes and solid mechanics plays a defining role in determining electrochemical degradation. This Perspective discusses how chemistry and mechanics are interrelated in influencing the reaction mechanisms, stability, and performance of both lithium metal anodes and alloy anodes. Battery systems with liquid electrolytes and solid-state electrolytes are considered because of the distinct effects of chemo-mechanics in each system. Building on this knowledge, we present a discussion of emerging ideas to control and mitigate chemo-mechanical degradation in these materials to enable translation to commercial systems, which could lead to the development of high-energy batteries that are urgently needed to power our increasingly electrified world. © 2020 American Chemical Society.
Idioma originalInglés
Páginas (desde-hasta)8755-8771
Número de páginas17
PublicaciónChemistry of Materials
Volumen32
N.º20
DOI
EstadoPublicada - 27 oct. 2020
Publicado de forma externa

Palabras clave

  • batteries
  • Electrode materials
  • Surface chemistry

Huella

Profundice en los temas de investigación de 'Toward High-Capacity Battery Anode Materials: Chemistry and Mechanics Intertwined'. En conjunto forman una huella única.

Citar esto