TinyML4D: Scaling Embedded Machine Learning Education in the Developing World

Brian Plancher, Sebastian Buttrich, Jeremy Ellis, Neena Goveas, Laila Kazimierski, Jesus Lopez Sotelo, Milan Lukic, Diego Mendez Chaves, Rosdiadee Nordin, Andres Oliva Trevisan, Massimo Pavan, Manuel Roveri, Marcus Rüb, Jackline Tum, Marian Verhelst, Salah Abdeljabar, Segun Adebayo, Thomas Amberg, Halleluyah Aworinde, José BagurGregg Barrett, Nabil Benamar, Bharat Chaudhari, Ronald Criollo, David Cuartielles, Jose Alberto Ferreira Filho, Solomon Gizaw, Evgeni Gousev, Alessandro Grande, Shawn Hymel, Peter Ing, Prashant Manandhar, Pietro Manzoni, Boris Murmann, Eric Pan, Rytis Paskauskas, Ermanno Pietrosemoli, Tales Pimenta, Marcelo Rovai, Marco Zennaro, Vijay Janapa Reddi

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Embedded machine learning (ML) on low-power devices, also known as "TinyML," enables intelligent applications on accessible hardware and fosters collaboration across disciplines to solve real-world problems. Its interdisciplinary and practical nature makes embedded ML education appealing, but barriers remain that limit its accessibility, especially in developing countries. Challenges include limited open-source software, courseware, models, and datasets that can be used with globally accessible heterogeneous hardware. Our vision is that with concerted effort and partnerships between industry and academia, we can overcome such challenges and enable embedded ML education to empower developers and researchers worldwide to build locally relevant AI solutions on low-cost hardware, increasing diversity and sustainability in the field. Towards this aim, we document efforts made by the TinyML4D community to scale embedded ML education globally through open-source curricula and introductory workshops co-created by international educators. We conclude with calls to action to further develop modular and inclusive resources and transform embedded ML into a truly global gateway to embedded AI skills development.
Idioma originalInglés
Título de la publicación alojadaProceedings of the AAAI 2024 Spring Symposium Series
Lugar de publicaciónStanford University, Stanford.
EditorialAssociation for the Advancement of Artificial Intelligence
Páginas508-515
Volumen3
Edición1
ISBN (versión impresa)2994-4317
DOI
EstadoPublicada - 20 may. 2024
EventoAAAI 2024 Spring Simposium - Stanford University, Stanford, Estados Unidos
Duración: 25 mar. 202427 mar. 2024
https://ojs.aaai.org/index.php/AAAI-SS/issue/view/604

Conferencia

ConferenciaAAAI 2024 Spring Simposium
País/TerritorioEstados Unidos
CiudadStanford
Período25/03/2427/03/24
Dirección de internet

Huella

Profundice en los temas de investigación de 'TinyML4D: Scaling Embedded Machine Learning Education in the Developing World'. En conjunto forman una huella única.

Citar esto