TY - JOUR
T1 - The human genome
T2 - A multifractal analysis
AU - Moreno, Pedro A.
AU - Vélez, Patricia E.
AU - Martínez, Ember
AU - Garreta, Luis E.
AU - Díaz, Néstor
AU - Amador, Siler
AU - Tischer, Irene
AU - Gutiérrez, José M.
AU - Naik, Ashwinikumar K.
AU - Tobar, Fabián
AU - García, Felipe
N1 - Funding Information:
We gratefully acknowledge the Departamento Administrativo de Ciencia, Tecnología e Innovación - COLCIENCIAS of the Republic of Colombia for supporting this project with Biotechnology Research Grant (#1103-12-16765). Thanks to Dr. Alberto Bohorquez and Dr. Heiber Cárdenas for their comments and suggestions. Finally, thanks to the Universidad del Cauca by the computer facilities and Escuela de Ingeniería de Sistemas y Computación at Universidad del Valle for the financial support for publication.
PY - 2011/10/14
Y1 - 2011/10/14
N2 - Background: Several studies have shown that genomes can be studied via a multifractal formalism. Recently, we used a multifractal approach to study the genetic information content of the Caenorhabditis elegans genome. Here we investigate the possibility that the human genome shows a similar behavior to that observed in the nematode.Results: We report here multifractality in the human genome sequence. This behavior correlates strongly on the presence of Alu elements and to a lesser extent on CpG islands and (G+C) content. In contrast, no or low relationship was found for LINE, MIR, MER, LTRs elements and DNA regions poor in genetic information. Gene function, cluster of orthologous genes, metabolic pathways, and exons tended to increase their frequencies with ranges of multifractality and large gene families were located in genomic regions with varied multifractality. Additionally, a multifractal map and classification for human chromosomes are proposed.Conclusions: Based on these findings, we propose a descriptive non-linear model for the structure of the human genome, with some biological implications. This model reveals 1) a multifractal regionalization where many regions coexist that are far from equilibrium and 2) this non-linear organization has significant molecular and medical genetic implications for understanding the role of Alu elements in genome stability and structure of the human genome. Given the role of Alu sequences in gene regulation, genetic diseases, human genetic diversity, adaptation and phylogenetic analyses, these quantifications are especially useful.
AB - Background: Several studies have shown that genomes can be studied via a multifractal formalism. Recently, we used a multifractal approach to study the genetic information content of the Caenorhabditis elegans genome. Here we investigate the possibility that the human genome shows a similar behavior to that observed in the nematode.Results: We report here multifractality in the human genome sequence. This behavior correlates strongly on the presence of Alu elements and to a lesser extent on CpG islands and (G+C) content. In contrast, no or low relationship was found for LINE, MIR, MER, LTRs elements and DNA regions poor in genetic information. Gene function, cluster of orthologous genes, metabolic pathways, and exons tended to increase their frequencies with ranges of multifractality and large gene families were located in genomic regions with varied multifractality. Additionally, a multifractal map and classification for human chromosomes are proposed.Conclusions: Based on these findings, we propose a descriptive non-linear model for the structure of the human genome, with some biological implications. This model reveals 1) a multifractal regionalization where many regions coexist that are far from equilibrium and 2) this non-linear organization has significant molecular and medical genetic implications for understanding the role of Alu elements in genome stability and structure of the human genome. Given the role of Alu sequences in gene regulation, genetic diseases, human genetic diversity, adaptation and phylogenetic analyses, these quantifications are especially useful.
UR - http://www.scopus.com/inward/record.url?scp=80054000048&partnerID=8YFLogxK
U2 - 10.1186/1471-2164-12-506
DO - 10.1186/1471-2164-12-506
M3 - Article
C2 - 21999602
AN - SCOPUS:80054000048
SN - 1471-2164
VL - 12
JO - BMC Genomics
JF - BMC Genomics
M1 - 506
ER -