The effects of simple density-dependent prey diffusion and refuge in a predator-prey system

Leoncio Rodriguez Q., Jia Zhao, Luis F. Gordillo

Producción: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

We study a spatial (two-dimensional) Rosenzweig-MacArthur model under the following assumptions: (1) prey spread follows a nonlinear diffusion rule, (2) preys have a refuge zone (sometimes called “protection zone”) where predators cannot enter, (3) predators move following linear diffusion. We present a bifurcation analysis for the system that shows the existence of positive solutions at the steady state. We complement the theoretical results with numerical computations and compare our results with those obtained in the case of having linear diffusion for the prey movement. Our results show that both models, with linear and nonlinear diffusion for the prey, have the same bifurcation point and the positive solution curves are virtually the same in a neighborhood of this point, but they get drastically different as the bifurcation parameter approaches zero.

Idioma originalInglés
Número de artículo124983
PublicaciónJournal of Mathematical Analysis and Applications
Volumen498
N.º2
DOI
EstadoPublicada - 15 jun. 2021
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'The effects of simple density-dependent prey diffusion and refuge in a predator-prey system'. En conjunto forman una huella única.

Citar esto