The Dirac Equation in the Kerr-de Sitter Metric

D. Batic, K. Morgan, M. Nowakowski, S. Bravo Medina

Producción: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

We consider a Fermion in the presence of a rotating BH immersed in a universe with a positive cosmological constant. After presenting a rigorous classification of the number and type of the horizons, we adopt the Carter tetrad to separate the aforementioned equation into radial and angular equations. We show how the Chandrasekhar ansatz leads to the construction of a symmetry operator that in the limit of a vanishing cosmological constant reproduces the square root of the squared total angular momentum operator for a Dirac particle in the Kerr metric. Furthermore, we prove that the the spectrum of the angular operator is discrete and consists of simple eigenvalues, and by means of the functional Bethe ansatz method we also derive a set of necessary and sufficient conditions for the angular operator to have polynomial solutions. Finally, we show that there exist no bound states for the Dirac equation in the non-extreme case.

Idioma originalInglés
Páginas (desde-hasta)224-244
Número de páginas21
PublicaciónGravitation and Cosmology
Volumen24
N.º3
DOI
EstadoPublicada - 01 jul. 2018
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'The Dirac Equation in the Kerr-de Sitter Metric'. En conjunto forman una huella única.

Citar esto