State of charge estimation of lifepo4 battery used in electric vehicles using support vector regression, PCA and DP battery model

Giambattista Gruosso, Giancarlo Storti Gajani, Juan D. Valladolid, DIego Patino, Freddy Ruiz

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

7 Citas (Scopus)

Resumen

This paper presents a new methodology for Stateof- Charge (SoC) estimation based on Support Vector Regression (SVR), Principal component Analysis (PCA) and the Dual Polarization (DP) battery model. The proposed methodology considers several factors that are significant for the prediction of battery current in Electric Vehicles (EVs) such as: speed, acceleration, voltage, pedal position; this information is then used as input to the DP battery model. Battery parameters were estimated using the Nonlinear Least Square (NLS) algorithm.

Idioma originalInglés
Título de la publicación alojada2019 IEEE Vehicle Power and Propulsion Conference, VPPC 2019 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781728112497
DOI
EstadoPublicada - oct. 2019
Evento2019 IEEE Vehicle Power and Propulsion Conference, VPPC 2019 - Hanoi, Vietnam
Duración: 14 oct. 201917 oct. 2019

Serie de la publicación

Nombre2019 IEEE Vehicle Power and Propulsion Conference, VPPC 2019 - Proceedings

Conferencia

Conferencia2019 IEEE Vehicle Power and Propulsion Conference, VPPC 2019
País/TerritorioVietnam
CiudadHanoi
Período14/10/1917/10/19

Huella

Profundice en los temas de investigación de 'State of charge estimation of lifepo4 battery used in electric vehicles using support vector regression, PCA and DP battery model'. En conjunto forman una huella única.

Citar esto