Resumen
A new stability criterion is proved for second-order differential equations with symmetries in terms of the coefficients of the expansion of the nonlinearity up to the third order. Such a criterion provides solutions of twist type, which are Lyapunov-stable solutions with interesting dynamical properties. This result is connected with the existence of upper and lower solutions of a Dirichlet problem and applied to a known equation which model the planar oscillations of a satellite in an elliptic orbit, giving an explicit region of parameters for which there exists a Lyapunov-stable solution.
| Idioma original | Inglés |
|---|---|
| Páginas (desde-hasta) | 700-709 |
| Número de páginas | 10 |
| Publicación | Journal of Mathematical Analysis and Applications |
| Volumen | 279 |
| N.º | 2 |
| DOI | |
| Estado | Publicada - 15 mar. 2003 |
| Publicado de forma externa | Sí |