Spectrally distinguishing symmetric spaces I

Emilio A Lauret, Juan Sebastián Rodriguez

Producción: Contribución a una revistaArtículo

Resumen

We prove that the irreducible symmetric space of complex structures on R2n (resp.
quaternionic structures on C2n) is spectrally unique within a 2-parameter (resp. 3-parameter)
family of homogeneous metrics on the underlying differentiable manifold. Such families are
strong candidates to contain all homogeneous metrics admitted on the corresponding manifolds.
The main tool in the proof is an explicit expression for the smallest positive eigenvalue of the
Laplace-Beltrami operator associated to each homogeneous metric involved. As a second conse-
quence of this expression, we prove that any non-symmetric Einstein metric in the homogeneous
families mentioned above are ν-unstable.
Idioma originalInglés
Número de páginas26
PublicaciónarXiv preprint arXiv:2311.09719
DOI
EstadoPublicación electrónica previa a su impresión - 2023

Huella

Profundice en los temas de investigación de 'Spectrally distinguishing symmetric spaces I'. En conjunto forman una huella única.

Citar esto