Spatial-temporal features of thermal images for Carpal Tunnel Syndrome detection

Kevin Estupinan Roldan, Marco A. Ortega Piedrahita, Hernan D. Benitez

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Disorders associated with repeated trauma account for about 60% of all occupational illnesses, Carpal Tunnel Syndrome (CTS) being the most consulted today. Infrared Thermography (IT) has come to play an important role in the field of medicine. IT is non-invasive and detects diseases based on measuring temperature variations. IT represents a possible alternative to prevalent methods for diagnosis of CTS (i.e. nerve conduction studies and electromiography). This work presents a set of spatial-temporal features extracted from thermal images taken in healthy and ill patients. Support Vector Machine (SVM) classifiers test this feature space with Leave One Out (LOO) validation error. The results of the proposed approach show linear separability and lower validation errors when compared to features used in previous works that do not account for temperature spatial variability.

Idioma originalInglés
Título de la publicación alojadaProceedings of SPIE-IS and T Electronic Imaging - Image Processing
Subtítulo de la publicación alojadaAlgorithms and Systems XII
EditorialSPIE
ISBN (versión impresa)9780819499363
DOI
EstadoPublicada - 2014
EventoImage Processing: Algorithms and Systems XII - San Francisco, CA, Estados Unidos
Duración: 03 feb. 201405 feb. 2014

Serie de la publicación

NombreProceedings of SPIE - The International Society for Optical Engineering
Volumen9019
ISSN (versión impresa)0277-786X
ISSN (versión digital)1996-756X

Conferencia

ConferenciaImage Processing: Algorithms and Systems XII
País/TerritorioEstados Unidos
CiudadSan Francisco, CA
Período03/02/1405/02/14

Huella

Profundice en los temas de investigación de 'Spatial-temporal features of thermal images for Carpal Tunnel Syndrome detection'. En conjunto forman una huella única.

Citar esto