TY - JOUR
T1 - Spatial and temporal invasion dynamics of the 2014-2017 Zika and chikungunya epidemics in Colombia
AU - Charniga, Kelly
AU - Cucunubá, Zulma M.
AU - Mercado, Marcela
AU - Prieto, Franklyn
AU - Ospina, Martha
AU - Nouvellet, Pierre
AU - Donnelly, Christl A.
N1 - Publisher Copyright:
© 2021 Charniga et al.
PY - 2021/7
Y1 - 2021/7
N2 - Zika virus (ZIKV) and chikungunya virus (CHIKV) were recently introduced into the Americas resulting in significant disease burdens. Understanding their spatial and temporal dynamics at the subnational level is key to informing surveillance and preparedness for future epidemics. We analyzed anonymized line list data on approximately 105,000 Zika virus disease and 412,000 chikungunya fever suspected and laboratory-confirmed cases during the 2014-2017 epidemics. We first determined the week of invasion in each city. Out of 1,122, 288 cities met criteria for epidemic invasion by ZIKA and 338 cities by CHIKV. We analyzed risk factors for invasion using linear and logistic regression models. We also estimated that the geographic origin of both epidemics was located in Barranquilla, north Colombia. We assessed the spatial and temporal invasion dynamics of both viruses to analyze transmission between cities using a suite of (i) gravity models, (ii) Stouffer's rank models, and (iii) radiation models with two types of distance metrics, geographic distance and travel time between cities. Invasion risk was best captured by a gravity model when accounting for geographic distance and intermediate levels of density dependence; Stouffer's rank model with geographic distance performed similarly well. Although a few long-distance invasion events occurred at the beginning of the epidemics, an estimated distance power of 1.7 (95% CrI: 1.5-2.0) from the gravity models suggests that spatial spread was primarily driven by short-distance transmission. Similarities between the epidemics were highlighted by jointly fitted models, which were preferred over individual models when the transmission intensity was allowed to vary across arboviruses. However, ZIKV spread considerably faster than CHIKV.
AB - Zika virus (ZIKV) and chikungunya virus (CHIKV) were recently introduced into the Americas resulting in significant disease burdens. Understanding their spatial and temporal dynamics at the subnational level is key to informing surveillance and preparedness for future epidemics. We analyzed anonymized line list data on approximately 105,000 Zika virus disease and 412,000 chikungunya fever suspected and laboratory-confirmed cases during the 2014-2017 epidemics. We first determined the week of invasion in each city. Out of 1,122, 288 cities met criteria for epidemic invasion by ZIKA and 338 cities by CHIKV. We analyzed risk factors for invasion using linear and logistic regression models. We also estimated that the geographic origin of both epidemics was located in Barranquilla, north Colombia. We assessed the spatial and temporal invasion dynamics of both viruses to analyze transmission between cities using a suite of (i) gravity models, (ii) Stouffer's rank models, and (iii) radiation models with two types of distance metrics, geographic distance and travel time between cities. Invasion risk was best captured by a gravity model when accounting for geographic distance and intermediate levels of density dependence; Stouffer's rank model with geographic distance performed similarly well. Although a few long-distance invasion events occurred at the beginning of the epidemics, an estimated distance power of 1.7 (95% CrI: 1.5-2.0) from the gravity models suggests that spatial spread was primarily driven by short-distance transmission. Similarities between the epidemics were highlighted by jointly fitted models, which were preferred over individual models when the transmission intensity was allowed to vary across arboviruses. However, ZIKV spread considerably faster than CHIKV.
UR - http://www.scopus.com/inward/record.url?scp=85109286082&partnerID=8YFLogxK
U2 - 10.1371/journal.pcbi.1009174
DO - 10.1371/journal.pcbi.1009174
M3 - Article
C2 - 34214074
AN - SCOPUS:85109286082
SN - 1553-734X
VL - 17
JO - PLoS Computational Biology
JF - PLoS Computational Biology
IS - 7
M1 - e1009174
ER -