Sparql2flink: Evaluation of sparql queries on apache flink

Oscar Ceballos, Carlos Alberto Ramírez Restrepo, María Constanza Pabón, Andres M. Castillo, Oscar Corcho

Producción: Contribución a una revistaArtículorevisión exhaustiva

4 Citas (Scopus)


Existing SPARQL query engines and triple stores are continuously improved to handle more massive datasets. Several approaches have been developed in this context proposing the storage and querying of RDF data in a distributed fashion, mainly using the MapReduce Programming Model and Hadoop-based ecosystems. New trends in Big Data technologies have also emerged (e.g., Apache Spark, Apache Flink); they use distributed in-memory processing and promise to deliver higher data processing performance. In this paper, we present a formal interpretation of some PACT transformations implemented in the Apache Flink DataSet API. We use this formalization to provide a mapping to translate a SPARQL query to a Flink program. The mapping was implemented in a prototype used to determine the correctness and performance of the solution. The source code of the project is available in Github under the MIT license.

Idioma originalInglés
Número de artículo7033
PublicaciónApplied Sciences (Switzerland)
EstadoPublicada - 01 ago. 2021


Profundice en los temas de investigación de 'Sparql2flink: Evaluation of sparql queries on apache flink'. En conjunto forman una huella única.

Citar esto