Some properties of the inhomogeneous panjer process

Ana Maria Beltrain Cortes, Jose Alfredo Jimenez Moscoso

Producción: Contribución a una revistaArtículorevisión exhaustiva

Resumen

The classical processes (Poisson, Bernoulli, negative binomial) are the most popular discrete counting processes; however, these rely on strict assumptions. We studied an inhomogeneous counting process (which is known as the inhomogeneous Panjer process-IPP) that not only includes the classical processes as special cases, but also allows to describe counting processes to approximate data with over-or under-dispersion. We present the most relevant properties of this process and establish the probability mass function and cumulative distribution function using intensity rates. This counting process will allow risk analysts who work modeling the counting processes where data dispersion exists in a more flexible and efficient way.

Idioma originalInglés
Páginas (desde-hasta)125-145
Número de páginas21
PublicaciónCommunications on Stochastic Analysis
Volumen13
N.º1
DOI
EstadoPublicada - 01 ene. 2019

Huella

Profundice en los temas de investigación de 'Some properties of the inhomogeneous panjer process'. En conjunto forman una huella única.

Citar esto