Shearlet-based sparse representation for super-resolution in diffusion weighted imaging (DWI)

Jonathan Tarquino, Andrea Rueda, Eduardo Romero

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

Diffusion Weighted (DW) imaging have proven to be useful in brain architectural analyses and in research about the brain tract organization and neuronal connectivity. However, the clinical use of DW images is currently limited by a series of acquisition artifacts, such as the partial volume effect (PVE), that affect the spatial resolution, and therefore, the sensitivity of further DW imaging analysis. In this paper, a new superresolution method is presented, given the redundancy present in this kind of images. The proposed method uses local information and a multiscale Shearlet transformation to represent the directional features and the spectral content of the DW images. A comparison of this proposal with a classical image interpolation method demonstrates an improvement of about 3 dB in the PSNR measure and 4.5% in the SSIM metric.

Idioma originalInglés
Título de la publicación alojada2014 IEEE International Conference on Image Processing, ICIP 2014
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas3897-3900
Número de páginas4
ISBN (versión digital)9781479957514
DOI
EstadoPublicada - 28 ene. 2014

Serie de la publicación

Nombre2014 IEEE International Conference on Image Processing, ICIP 2014

Huella

Profundice en los temas de investigación de 'Shearlet-based sparse representation for super-resolution in diffusion weighted imaging (DWI)'. En conjunto forman una huella única.

Citar esto