TY - JOUR
T1 - Sequence analysis of the 3-untranslated region of HSP70 (type I) genes in the genus Leishmania
T2 - Its usefulness as a molecular marker for species identification
AU - Requena, Jose M.
AU - Chicharro, Carmen
AU - García, Lineth
AU - Parrado, Rudy
AU - Puerta, Concepcián J.
AU - Cãavate, Carmen
N1 - Funding Information:
The authors would like to thank J. P. Dedet and Francine Pratlong (Centre National de Référence des Leishmania, Montpellier, France) who kindly donated some of the strains used in this study. We gratefully acknowledge assistance from our technician (Virginia Franco) and a Master’s student (Marta Truchado), who contributed to the cloning step. The careful revision of two anonymous reviewers and their comments and suggestions are also appreciated. This work was supported by grants from the Ministerio de Ciencia y Tecnología (BFU2009-08986), the Fondo de Investigaciones Sanitarias (ISCIII-RETIC RD06/0021/0008-FEDER and ISCIII-RETIC RD06/0021/ 0009-FEDER), and Agencia Española de Cooperación Internacional para el Desarrollo (AECID, A/024740/09). Also, an institutional grant from Fundación Ramón Areces is acknowledged.
PY - 2012
Y1 - 2012
N2 - Background: The Leishmaniases are a group of clinically diverse diseases caused by parasites of the genus Leishmania. To distinguish between species is crucial for correct diagnosis and prognosis as well as for treatment decisions. Recently, sequencing of the HSP70 coding region has been applied in phylogenetic studies and for identifying of Leishmania species with excellent results. Methods: In the present study, we analyzed the 3-untranslated region (UTR) of Leishmania HSP70-type I gene from 24 strains representing eleven Leishmania species in the belief that this non-coding region would have a better discriminatory capacity for species typing than coding regions. Results: It was observed that there was a remarkable degree of sequence conservation in this region, evenbetween species of the subgenus Leishmania and Viannia. In addition, the presence of many microsatellites was a common feature of the 3-UTR of HSP70-I genes in the Leishmania genus. Finally, we constructed dendrograms based on global sequence alignments of the analyzed Leishmania species and strains, the results indicated that this particular region of HSP70 genes might be useful for species (or species complex) typing, improving for particular species the discrimination capacity of phylogenetic trees based on HSP70 coding sequences. Given the large size variation of the analyzed region between the Leishmania and Viannia subgenera, direct visualization of the PCR amplification product would allow discrimination between subgenera, and a HaeIII-PCR-RFLP analysis might be used for differentiating some species within each subgenera. Conclusions: Sequence and hylogenetic analyses indicated that this region, which is readily amplified using a single pair of primers from both Old and New World Leishmania species, might be useful as a molecular marker for species discrimination.
AB - Background: The Leishmaniases are a group of clinically diverse diseases caused by parasites of the genus Leishmania. To distinguish between species is crucial for correct diagnosis and prognosis as well as for treatment decisions. Recently, sequencing of the HSP70 coding region has been applied in phylogenetic studies and for identifying of Leishmania species with excellent results. Methods: In the present study, we analyzed the 3-untranslated region (UTR) of Leishmania HSP70-type I gene from 24 strains representing eleven Leishmania species in the belief that this non-coding region would have a better discriminatory capacity for species typing than coding regions. Results: It was observed that there was a remarkable degree of sequence conservation in this region, evenbetween species of the subgenus Leishmania and Viannia. In addition, the presence of many microsatellites was a common feature of the 3-UTR of HSP70-I genes in the Leishmania genus. Finally, we constructed dendrograms based on global sequence alignments of the analyzed Leishmania species and strains, the results indicated that this particular region of HSP70 genes might be useful for species (or species complex) typing, improving for particular species the discrimination capacity of phylogenetic trees based on HSP70 coding sequences. Given the large size variation of the analyzed region between the Leishmania and Viannia subgenera, direct visualization of the PCR amplification product would allow discrimination between subgenera, and a HaeIII-PCR-RFLP analysis might be used for differentiating some species within each subgenera. Conclusions: Sequence and hylogenetic analyses indicated that this region, which is readily amplified using a single pair of primers from both Old and New World Leishmania species, might be useful as a molecular marker for species discrimination.
KW - 3UTR
KW - HSP70
KW - Leishmania
KW - Microsatellites
KW - Phylogenetic analysis
KW - Sequence analysis
UR - http://www.scopus.com/inward/record.url?scp=84862234647&partnerID=8YFLogxK
U2 - 10.1186/1756-3305-5-87
DO - 10.1186/1756-3305-5-87
M3 - Article
C2 - 22541251
AN - SCOPUS:84862234647
SN - 1756-3305
VL - 5
JO - Parasites and Vectors
JF - Parasites and Vectors
IS - 1
M1 - 87
ER -