Semi-linear Cauchy problem and Markov process associated with a p-adic non-local ultradiffusion operator

O. F. Casas-Sánchez, L. F. Chacón-Cortés, J. Galeano-Peñaloza

Producción: Contribución a una revistaArtículorevisión exhaustiva

7 Citas (Scopus)

Resumen

This work is dedicated to study the pseudodifferential operator (Dd1,d2αφ)(x)=-∫QpnAd1,d2-α(y)[φ(x+y)-φ(x)]dny, which can be seen as a generalization of Taibleson operator; here Ad1,d2α(x)=max{∥x∥pd1,∥x∥pd2}α. We show that semi-linear Cauchy problem is well-posed in Mλ [a Banach space containing functions that do not belong to L1(Qpn)], assuming that semi-linear part f is a Lipschitz function. We associate to the corresponding homogeneous problem a Markov process, which is indeed a Feller process. Finally, we study the first passage time problem.

Idioma originalInglés
Páginas (desde-hasta)1085-1110
Número de páginas26
PublicaciónJournal of Pseudo-Differential Operators and Applications
Volumen11
N.º3
DOI
EstadoPublicada - 01 sep. 2020

Huella

Profundice en los temas de investigación de 'Semi-linear Cauchy problem and Markov process associated with a p-adic non-local ultradiffusion operator'. En conjunto forman una huella única.

Citar esto