Segmentation of the Cervix in Colposcopy Images Using Machine Learning Techniques

Ana Maria Bolanos Semanate, Santiago Hurtado Bustos, Hernan Dario Vargas-Cardona, Marcela Arrivillaga Quintero

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Cervical cancer caused by human Papillomavirus (HPV), a sexually transmitted disease, is one of the most common neoplasms in women nationally and globally. Although there are health campaigns promoting screening tests to detect the disease, the waiting times for results are high due to deficiencies in laboratory infrastructure, affecting diagnosis. In this work, we propose to apply machine learning techniques for cervical segmentation in colposcopy images obtained during cytology, more specifically the cervix region for supporting a further classification stage. Finally, we develop a desktop application only for unsupervised learning models. Also, this work is a result of the project CITOBOT, funded by Minciencias and developed by a multidisciplinary team. Results show acceptable metrics in the segmentation of the cervix, both in unsupervised and supervised methods.

Idioma originalInglés
Título de la publicación alojada2024 3rd International Congress of Biomedical Engineering and Bioengineering, CIIBBI 2024
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798331532352
DOI
EstadoPublicada - 2024
Evento3rd International Congress of Biomedical Engineering and Bioengineering, CIIBBI 2024 - Cali, Colombia
Duración: 06 nov. 202408 nov. 2024

Serie de la publicación

Nombre2024 3rd International Congress of Biomedical Engineering and Bioengineering, CIIBBI 2024

Conferencia

Conferencia3rd International Congress of Biomedical Engineering and Bioengineering, CIIBBI 2024
País/TerritorioColombia
CiudadCali
Período06/11/2408/11/24

Huella

Profundice en los temas de investigación de 'Segmentation of the Cervix in Colposcopy Images Using Machine Learning Techniques'. En conjunto forman una huella única.

Citar esto