TY - JOUR
T1 - Scaling Plant Functional Strategies from Species to Communities in Regenerating Amazonian Forests
T2 - Insights for Restoration in Deforested Landscapes
AU - Rodríguez-León, Carlos H.
AU - Sterling, Armando
AU - Daza-Giraldo, Dorman D.
AU - Suárez-Córdoba, Yerson D.
AU - Roa-Fuentes, Lilia L.
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/8/14
Y1 - 2025/8/14
N2 - Understanding how main plant functional strategies scale from species to communities is critical for guiding restoration in tropical disturbed areas by unsustainable livestock grazing; yet, the patterns and drivers of functional trait space along successional trajectories remain poorly understood. Here, we investigated functional trait space using principal component analyses (PCAs) based on eight traits related to leaf, stem, and seed morphology across 226 tree species and 33 forest communities along a chronosequence of natural regeneration following cattle ranching abandonment in deforested landscapes of the Colombian Amazon. We identified three species-level functional axes—namely, the ‘Structural–Reproductive Allocation Axis’, the ‘Mechanical Support and Tissue Investment Axis’, and the ‘Leaf Economics Axis’—and two community-level axes: the ‘Colonization–Longevity Axis’ and the ‘Persistence–Acquisition Axis’. These axes aligned with the life-history strategies of short-lived pioneers, long-lived pioneers, and old-growth species, and reflected their relationships with key environmental drivers. Community-level functional composition reflected species-level patterns, but was also shaped by soil properties, microclimate, and tree species richness. Forest age and precipitation promoted conservative strategies, while declining soil fertility suggested a decoupling between above- and belowground recovery. Functional richness and divergence were highest in mid-successional forests dominated by long-lived pioneers. Our findings highlight the role of environmental and successional filters in shaping functional trait space and emphasize the value of functionally diverse communities. Particularly, our results indicate that long-lived pioneers (LLP) such as Astrocaryum chambira Burret and Pouteria campanulata Baehni, with traits like large height, intermediate wood density, and larger seed size, represent ideal candidates for early enrichment strategies due to their facilitation roles in succession supporting restoration efforts in regenerating Amazonian forests.
AB - Understanding how main plant functional strategies scale from species to communities is critical for guiding restoration in tropical disturbed areas by unsustainable livestock grazing; yet, the patterns and drivers of functional trait space along successional trajectories remain poorly understood. Here, we investigated functional trait space using principal component analyses (PCAs) based on eight traits related to leaf, stem, and seed morphology across 226 tree species and 33 forest communities along a chronosequence of natural regeneration following cattle ranching abandonment in deforested landscapes of the Colombian Amazon. We identified three species-level functional axes—namely, the ‘Structural–Reproductive Allocation Axis’, the ‘Mechanical Support and Tissue Investment Axis’, and the ‘Leaf Economics Axis’—and two community-level axes: the ‘Colonization–Longevity Axis’ and the ‘Persistence–Acquisition Axis’. These axes aligned with the life-history strategies of short-lived pioneers, long-lived pioneers, and old-growth species, and reflected their relationships with key environmental drivers. Community-level functional composition reflected species-level patterns, but was also shaped by soil properties, microclimate, and tree species richness. Forest age and precipitation promoted conservative strategies, while declining soil fertility suggested a decoupling between above- and belowground recovery. Functional richness and divergence were highest in mid-successional forests dominated by long-lived pioneers. Our findings highlight the role of environmental and successional filters in shaping functional trait space and emphasize the value of functionally diverse communities. Particularly, our results indicate that long-lived pioneers (LLP) such as Astrocaryum chambira Burret and Pouteria campanulata Baehni, with traits like large height, intermediate wood density, and larger seed size, represent ideal candidates for early enrichment strategies due to their facilitation roles in succession supporting restoration efforts in regenerating Amazonian forests.
KW - Amazonian forests
KW - community assembly
KW - ecological restoration
KW - functional trait space
KW - functional traits
KW - secondary succession
UR - https://www.scopus.com/pages/publications/105014500857
U2 - 10.3390/d17080570
DO - 10.3390/d17080570
M3 - Article
AN - SCOPUS:105014500857
SN - 1424-2818
VL - 17
SP - 1
EP - 25
JO - Diversity
JF - Diversity
IS - 8
M1 - 570
ER -