Resumen
Anatomical variability of patient's brains limits the statistical analyses about presence or absence of a pathology. In this paper, we present an approach for classification of brain Magnetic Resonance (MR) images from healthy and diseased subjects. The approach builds up a saliency map, which extract regions of relative change in three different dimensions: intensity, orientation and edges. The obtained regions of interest are used as suitable patterns for subject classification using support vector machines. The strategy's performance was assessed on a set of 198 MR images extracted from the OASIS database and divided into four groups, reporting an average accuracy rate of 74.54% and an average Equal Error Rate of 0.725%.
| Título traducido de la contribución | Caracterización de diferencias grupales basadas en saliencia para la clasificación de patologías en resonancia magnética |
|---|---|
| Idioma original | Inglés |
| Páginas (desde-hasta) | 21-28 |
| Número de páginas | 8 |
| Publicación | DYNA (Colombia) |
| Volumen | 80 |
| N.º | 178 |
| Estado | Publicada - abr. 2013 |
| Publicado de forma externa | Sí |