Removing spatial outliers in PS applications

Diego Mendez, Miguel A. Labrador

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

In this paper we study the problem of sensor data verification in Participatory Sensing (PS) systems using an air quality/pollution monitoring application as a validation example. Data verification, in the context of PS, consists of the process of removing spatial outliers to properly reconstruct the variables of interest. We propose a hybrid neighborhood-aware algorithm for outlier detection that considers the uneven spatial density of the users, the number of malicious users, the level of conspiracy, and the lack of accuracy and malfunctioning sensors. The algorithm utilizes the Delaunay triangulation and Gaussian Mixture Models to build neighborhoods based on the spatial and non-spatial attributes of each location. Our experimental results show that our hybrid algorithm performs as good as the best estimator while considerably reducing the execution time.

Idioma originalInglés
Título de la publicación alojada2012 International Conference on Selected Topics in Mobile and Wireless Networking, ICOST 2012
Páginas66-71
Número de páginas6
DOI
EstadoPublicada - 2012
Publicado de forma externa
Evento2012 International Conference on Selected Topics in Mobile and Wireless Networking, ICOST 2012 - Avignon, Francia
Duración: 02 jul. 201204 jul. 2012

Serie de la publicación

Nombre2012 International Conference on Selected Topics in Mobile and Wireless Networking, ICOST 2012

Conferencia

Conferencia2012 International Conference on Selected Topics in Mobile and Wireless Networking, ICOST 2012
País/TerritorioFrancia
CiudadAvignon
Período02/07/1204/07/12

Huella

Profundice en los temas de investigación de 'Removing spatial outliers in PS applications'. En conjunto forman una huella única.

Citar esto