Remote Sensing for Risk Management: Solid Waste Detection Using YOLOv10

Camilo Naufal, Laura V. Paredes, Cesar L. Gonzalez, Alejandro Patron Montero, Andres G. Marrugo, Yady Tatiana Solano-Correa

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

The effective detection of obstructions in urban water channels is critical for mitigating social and environmental impacts, particularly those related to flooding, and for strengthening environmental management. Traditional methods employed by local authorities for identifying solid waste are often expensive and pose health risks to field personnel. This study presents a system for detecting obstructive solid waste in urban waterways using the YOLOv10 deep learning model. Leveraging drone imagery collected over a coastal city's drainage channel, the approach generates reliable data to support early detection of flood-related hazards. A dataset of 1230 augmented images was used to fine-Tune a pre-Trained YOLOv10x model over 150 epochs. Preliminary results show the model's ability to effectively identify garbage, debris, and vegetation, offering an innovative tool for urban flood risk mitigation. The findings highlight the potential of deep learning to enhance environmental monitoring and support the planning of more resilient urban infrastructure.

Idioma originalInglés
Título de la publicación alojada2025 25th Symposium of Image, Signal Processing, and Artificial Vision, STSIVA 2025
EditorialInstitute of Electrical and Electronics Engineers Inc.
Número de páginas5
ISBN (versión digital)9798331538088
ISBN (versión impresa)9798331538088
DOI
EstadoPublicada - 27 ago. 2025
Publicado de forma externa
Evento25th Symposium of Image, Signal Processing, and Artificial Vision, STSIVA 2025 - Armenia, Colombia
Duración: 27 ago. 202529 ago. 2025

Serie de la publicación

Nombre2025 25th Symposium of Image, Signal Processing, and Artificial Vision, STSIVA 2025

Conferencia

Conferencia25th Symposium of Image, Signal Processing, and Artificial Vision, STSIVA 2025
País/TerritorioColombia
CiudadArmenia
Período27/08/2529/08/25

Huella

Profundice en los temas de investigación de 'Remote Sensing for Risk Management: Solid Waste Detection Using YOLOv10'. En conjunto forman una huella única.

Citar esto