Regularization techniques and parameter estimation for object detection in hyperspectral data

Mabel D. Ramírez-Vélez, Luis O. Jiménez-Rodríguez

Producción: Contribución a una revistaArtículo de la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

The main challenge for the retrieval of information using hyperspectral sensors is that due to the high dimensionality provided by them there is not comparably enough a priori data to produce well-estimated parameters to solve our detection problem. This lack of enough a priori information for an estimation yields to a rank-deficient problem. As a consequence, this leads to an increment in false alarms and increase in the probability of missing throughout the classification process. An approach based on a regularization technique applied to the data collected from the hyperspectral sensor is used to simultaneously minimize the probabilities of false alarms and missing. This procedure is implemented using algorithms that apply regularization techniques by biasing the covariance matrix, which enable the simultaneous reduction of the probability of false alarm and the decrease of the probability of missing; thus, enhancing the Maximum Likelihood parameter estimation.

Idioma originalInglés
Páginas (desde-hasta)694-704
Número de páginas11
PublicaciónProceedings of SPIE - The International Society for Optical Engineering
Volumen5093
DOI
EstadoPublicada - 2003
Publicado de forma externa
EventoAlgorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery IX - Orlando, FL, Estados Unidos
Duración: 21 abr. 200324 abr. 2003

Huella

Profundice en los temas de investigación de 'Regularization techniques and parameter estimation for object detection in hyperspectral data'. En conjunto forman una huella única.

Citar esto