Recognition of brain structures from MER-signals using dynamic MFCC analysis and a HMC classifier

Mauricio Holguin, German A. Holguin, Hernán Darío Vargas Cardona, Genaro Daza, Enrique Guijarro, Alvaro Orozco

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

A novel methodology for the characterization of Microelectrode Recording signals (MER-signals) in Parkinson's patients in order to recognize basal ganglia in the brain is presented in this work. The most common approach of MER signals analysis consists of time-frequency analysis through Short Time Fourier Transform, Wavelet Transform, or Filters Banks. We present an approach based on MEL-Frequency Cepstral Coefficients (MFCC) and K-means clustering to obtain dynamic features from MER-signals. A Hidden Markov Chain (HMC) with 1, 2, 3, and 4 states was used for the classification of four classes of basal ganglia: Thalamus (Tal), Zone Incerta (ZI), Subthalamic Nucleus (STN) and Substantia Nigra reticulata (SNr), achieving a positive identification over 82%. A performance analysis for each HHM model is presented using ROC curves.

Idioma originalInglés
Título de la publicación alojada13th Mediterranean Conference on Medical and Biological Engineering and Computing 2013 - MEDICON 2013
EditorialSpringer Verlag
Páginas742-745
Número de páginas4
ISBN (versión impresa)9783319008455
DOI
EstadoPublicada - 2014
Publicado de forma externa
Evento13th Mediterranean Conference on Medical and Biological Engineering and Computing 2013, MEDICON 2013 - Seville, Espana
Duración: 25 sep. 201328 sep. 2013

Serie de la publicación

NombreIFMBE Proceedings
Volumen41
ISSN (versión impresa)1680-0737

Conferencia

Conferencia13th Mediterranean Conference on Medical and Biological Engineering and Computing 2013, MEDICON 2013
País/TerritorioEspana
CiudadSeville
Período25/09/1328/09/13

Huella

Profundice en los temas de investigación de 'Recognition of brain structures from MER-signals using dynamic MFCC analysis and a HMC classifier'. En conjunto forman una huella única.

Citar esto