Reasoning about distributed knowledge of groups with infinitely many agents

Michell Guzmán, Sophia Knight, Santiago Quintero, Sergio Ramírez, Camilo Rueda, Frank Valencia

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

4 Citas (Scopus)

Resumen

Spatial constraint systems (scs) are semantic structures for reasoning about spatial and epistemic information in concurrent systems. We develop the theory of scs to reason about the distributed information of potentially infinite groups. We characterize the notion of distributed information of a group of agents as the infimum of the set of join-preserving functions that represent the spaces of the agents in the group. We provide an alternative characterization of this notion as the greatest family of join-preserving functions that satisfy certain basic properties. We show compositionality results for these characterizations and conditions under which information that can be obtained by an infinite group can also be obtained by a finite group. Finally, we provide algorithms that compute the distributive group information of finite groups.

Idioma originalInglés
Título de la publicación alojada30th International Conference on Concurrency Theory, CONCUR 2019
EditoresWan Fokkink, Rob van Glabbeek
EditorialSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (versión digital)9783959771214
DOI
EstadoPublicada - ago. 2019
Evento30th International Conference on Concurrency Theory, CONCUR 2019 - Amsterdam, Países Bajos
Duración: 27 ago. 201930 ago. 2019

Serie de la publicación

NombreLeibniz International Proceedings in Informatics, LIPIcs
Volumen140
ISSN (versión impresa)1868-8969

Conferencia

Conferencia30th International Conference on Concurrency Theory, CONCUR 2019
País/TerritorioPaíses Bajos
CiudadAmsterdam
Período27/08/1930/08/19

Huella

Profundice en los temas de investigación de 'Reasoning about distributed knowledge of groups with infinitely many agents'. En conjunto forman una huella única.

Citar esto