Periodic Solutions in the Generalized Sitnikov (N+1)-Body Problem

Producción: Contribución a una revistaArtículorevisión exhaustiva

13 Citas (Scopus)

Resumen

This paper studies a special restricted ( n + 1)-body problem which can be reduced to the Sitnikov problem with an appropriate positive parameter. According to the number of bodies we prove the existence (or nonexistence) of a finite (or infinite) number of symmetric families of periodic solutions. These solutions bifurcate from the equilibrium at the center of mass of the system.
Idioma originalIndefinido/desconocido
PublicaciónSIAM Journal on Applied Dynamical Systems
DOI
EstadoPublicada - 2013

Palabras clave

  • N-body problem, Sitnikov problem, periodic orbits, bifurcations, global continuation, Sturm– Liouville theory

Citar esto