One-day-ahead electricity demand forecasting in holidays using discrete-interval moving seasonalities

Oscar Trull, J. Carlos García-Díaz, Alicia Troncoso

Producción: Contribución a una revistaArtículorevisión exhaustiva

25 Citas (Scopus)

Resumen

Transmission System Operators provide forecasts of electricity demand to the electricity system. The producers and sellers use this information to establish the next day production units planning and prices. The results obtained are very accurate. However, they have a great deal with special events forecasting. Special events produce anomalous load conditions, and the models used to provide predictions must react properly against these situations. In this article, a new forecasting method based on multiple seasonal Holt-Winters modelling including discrete-interval moving seasonalities is applied to the Spanish hourly electricity demand to predict holidays with a 24-h prediction horizon. It allows the model to integrate the anomalous load within the model. The main results show how the new proposal outperforms regular methods and reduces the forecasting error from 9.5% to under 5% during holidays.

Idioma originalInglés
Número de artículo120966
PublicaciónEnergy
Volumen231
DOI
EstadoPublicada - 15 sep. 2021
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'One-day-ahead electricity demand forecasting in holidays using discrete-interval moving seasonalities'. En conjunto forman una huella única.

Citar esto