On TinyML WiFi Fingerprinting-Based Indoor Localization: Comparing RSSI vs. CSI Utilization

Diego Mendez, Marco Zennaro, Moez Altayeb, Pietro Manzoni

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

As context-aware location-based services (LBS) become increasingly important in many Internet of Things (IoT) verticals, such as logistics or industry 4.0, indoor localization is now an essential feature to be integrated in these solutions. For this purpose, fingerprinting-based solutions arise as a feasible solution, especially when integrating artificial intelligence on the edge, supported by computational and memory-restricted embedded devices, as it does not depend on a cloud-based deployment. In this work, we integrate this new paradigm, known as TinyML, and compare the implementation of a machine learning (ML) model when using only WiFi Received Signal Strength Indicator (RSSI) or WiFi Channel State Information (CSI) data. We tested two different scenarios, a single sample or time series, with different configurations of the trained neural network. Our results show that a CSI data ML model always outperforms an equivalent RSSI approach, with a massive difference in performance for the time-series case.

Idioma originalInglés
Título de la publicación alojada2024 IEEE 21st Consumer Communications and Networking Conference, CCNC 2024
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350304572
DOI
EstadoPublicada - 2024
Evento21st IEEE Consumer Communications and Networking Conference, CCNC 2024 - Las Vegas, Estados Unidos
Duración: 06 ene. 202409 ene. 2024

Serie de la publicación

NombreProceedings - IEEE Consumer Communications and Networking Conference, CCNC
ISSN (versión impresa)2331-9860

Conferencia

Conferencia21st IEEE Consumer Communications and Networking Conference, CCNC 2024
País/TerritorioEstados Unidos
CiudadLas Vegas
Período06/01/2409/01/24

Huella

Profundice en los temas de investigación de 'On TinyML WiFi Fingerprinting-Based Indoor Localization: Comparing RSSI vs. CSI Utilization'. En conjunto forman una huella única.

Citar esto