On the geometry of compatible Poisson and Riemannian structures

Nicolás Martínez Alba, Andrés Vargas

Producción: Contribución a una revistaArtículorevisión exhaustiva

Resumen

We consider compatibility conditions between Poisson and Riemannian structures on smooth manifolds by means of a contravariant Levi-Civita connection. These include Riemann–Poisson structures (as defined by M. Boucetta), and the class of almost Kähler–Poisson manifolds, introduced with the aid of a contravariant f-structure, that will be called partially co-complex structure, in analogy with complex ones on Kähler manifolds. Additionally, we study the geometry of the symplectic foliation, and the behavior of these compatibilities under structure preserving maps and symmetries.

Idioma originalInglés
Número de artículo105593
Páginas (desde-hasta)1-26
Número de páginas26
PublicaciónJournal of Geometry and Physics
Volumen216
DOI
EstadoPublicada - oct. 2025

Huella

Profundice en los temas de investigación de 'On the geometry of compatible Poisson and Riemannian structures'. En conjunto forman una huella única.

Citar esto