Novel Materials with Effective Super Dielectric Constants for Energy Storage

Producción: Contribución a una revistaArtículorevisión exhaustiva

8 Citas (Scopus)

Resumen

To test a theory of the recently discovered phenomenon of super dielectric behavior at very low frequency, the dielectric constants of several ‘pastes’, composed of porous alumina powders filled to the point of incipient wetness with water containing dissolved sodium chloride, were measured. The effective dielectric low frequency constants of some of the pastes were greater than 1010, dramatically higher than that of any material ever reported. Moreover, the total energy density reported for one capacitor generated with NaCl-based super dielectric material is marginally higher than found in any prior report. These results are consistent with this recently postulated model of low frequency super dielectric behavior in porous, non-conductive materials saturated with ion-containing liquids: upon the application of an electric field, ions dissolved in the saturating liquid contained in the pores will travel to the ends of pore-filling liquid droplets creating giant dipoles. The fields of these giant dipoles oppose the applied field, reducing the net field created per unit of charge on the capacitor plates, effectively increasing charge/voltage ratio, hence capacitance. This is simply a version of the theory of ‘polarizable media’ found in most classic texts on electromagnetism. Other observations reported here include (1) the impact of ion concentration on dielectric values, (2) a maximum voltage similar to that associated with the electrical breakdown of water, (3) the loss of capacitance upon drying, (4) the recovery of capacitance upon the addition of water to a dry super dielectric material, and (5) the linear relationship between capacitance and inverse thickness. All observations are consistent with the earlier proposed model of the super dielectric phenomenon. An extrapolation of results suggests this technology can lead to energy density greater than the best lithium-ion battery.

Idioma originalInglés
Páginas (desde-hasta)1367-1376
Número de páginas10
PublicaciónJournal of Electronic Materials
Volumen44
N.º5
DOI
EstadoPublicada - 24 mar. 2015
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Novel Materials with Effective Super Dielectric Constants for Energy Storage'. En conjunto forman una huella única.

Citar esto