Novel computational deep learning strategy for neuroprotection identification reveals unique set of nicotine analogs as potential therapeutic compounds against Parkinson’s disease

F. Rojas-Rodríguez, C. Morantes, A. Pinzón, G.E. Barreto, R. Cabezas, L. Mariño, Janneth Gonzalez Santos

Producción: Productos de docenciaOtros productos de docenciaInvestigaciónrevisión exhaustiva

Resumen

Dopaminergic replacement has been used for Parkinson’s Disease (PD) treatment with positive effects on motor symptomatology but with low effects over disease progression and prevention. Different epidemiological studies have shown that nicotine consumption decreases PD prevalence through the activation of neuroprotective mechanisms. Nicotine-induced neuroprotection has been associated with the overstimulation of intracellular signaling pathways (SP) such as Phosphatidyl Inositol 3-kinase/Protein kinase-B (PI3K/AKT) through nicotinic acetylcholine receptors (e.g α7 nAChRs) and the over-expression of the anti-apoptotic gene Bcl-2. Considering its harmful effects (toxicity and dependency), the search for nicotine analogs with decreased secondary effects, but similar neuroprotective activity, remains a promissory field of study. In this work, a computational strategy integrating structural bioinformatics, signaling pathway (SP) manual reconstruction, and deep learning was performed to predict the potential neuroprotective activity of a series of 8 novel nicotine analogs over the behavior of PI3K/AKT. We performed a protein-ligand analysis between nicotine analogs and α7 nAChRs receptor using geometrical conformers, physicochemical characterization of the analogs and developed a manually curated neuroprotective dataset to analyze their potential activity. Additionally, we developed a predictive machine-learning model for neuroprotection in PD through the integration of Markov Chain Monte-Carlo transition matrix for the SP with synthetic training datasets of the physicochemical properties and structural dataset. Our model was able to predict the potential neuroprotective activity of seven new nicotine analogs based on the binomial Bcl-2 response regulated by the activation of PI3K/AKT. We present a new computational strategy to predict the pharmacological neuroprotective potential of nicotine analogs based on SP architecture, using deep learning and structural data. Our theoretical strategy can be further applied to the study new treatments related with SP deregulation and may ultimately offer new opportunities for therapeutic interventions in neurodegenerative diseases.
Idioma originalInglés
Número de páginas53
DOI
EstadoPublicada - 2019

Huella

Profundice en los temas de investigación de 'Novel computational deep learning strategy for neuroprotection identification reveals unique set of nicotine analogs as potential therapeutic compounds against Parkinson’s disease'. En conjunto forman una huella única.

Citar esto