Neural Network Prediction Interval Based on Joint Supervision

Nicolás Cruz, Luis G. Marín, Doris Sáez

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

11 Citas (Scopus)

Resumen

In this paper, a new prediction interval model based on a joint supervision loss function for capturing the uncertainties associated with the modeled phenomenon is described. This model provides the upper and lower bounds of the predicted values in accordance with the desired coverage probability, as well as their expected values. A benchmark problem is used to evaluate the proposed method, and a comparison with the neural network covariance method is performed. Additionally, the proposed method was applied to forecast the residential demand from a town in UK, considering the prediction interval performance for one-day ahead. The results show that the method is able to generate an interval with narrower width than the covariance method, and maintains the coverage probability. The information provided by the prediction interval could be used in the design of microgrid energy management systems.

Idioma originalInglés
Título de la publicación alojada2018 International Joint Conference on Neural Networks, IJCNN 2018 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781509060146
DOI
EstadoPublicada - 10 oct. 2018
Publicado de forma externa
Evento2018 International Joint Conference on Neural Networks, IJCNN 2018 - Rio de Janeiro, Brasil
Duración: 08 jul. 201813 jul. 2018

Serie de la publicación

NombreProceedings of the International Joint Conference on Neural Networks
Volumen2018-July

Conferencia

Conferencia2018 International Joint Conference on Neural Networks, IJCNN 2018
País/TerritorioBrasil
CiudadRio de Janeiro
Período08/07/1813/07/18

Huella

Profundice en los temas de investigación de 'Neural Network Prediction Interval Based on Joint Supervision'. En conjunto forman una huella única.

Citar esto