TY - GEN
T1 - Multi-resolution analysis for region of interest extraction in thermographic nondestructive evaluation
AU - Ortiz-Jaramillo, B.
AU - Fandiño Toro, H. A.
AU - Benitez-Restrepo, H. D.
AU - Orjuela-Vargas, S. A.
AU - Castellanos-Domínguez, G.
AU - Philips, W.
PY - 2012
Y1 - 2012
N2 - Infrared Non-Destructive Testing (INDT) is known as an effective and rapid method for nondestructive inspection. It can detect a broad range of near-surface structuring flaws in metallic and composite components. Those flaws are modeled as a smooth contour centered at peaks of stored thermal energy, termed Regions of Interest (ROI). Dedicated methodologies must detect the presence of those ROIs. In this paper, we present a methodology for ROI extraction in INDT tasks. The methodology deals with the difficulties due to the non-uniform heating. The non-uniform heating affects low spatial/frequencies and hinders the detection of relevant points in the image. In this paper, a methodology for ROI extraction in INDT using multi-resolution analysis is proposed, which is robust to ROI low contrast and non-uniform heating. The former methodology includes local correlation, Gaussian scale analysis and local edge detection. In this methodology local correlation between image and Gaussian window provides interest points related to ROIs. We use a Gaussian window because thermal behavior is well modeled by Gaussian smooth contours. Also, the Gaussian scale is used to analyze details in the image using multi-resolution analysis avoiding low contrast, non-uniform heating and selection of the Gaussian window size. Finally, local edge detection is used to provide a good estimation of the boundaries in the ROI. Thus, we provide a methodology for ROI extraction based on multi-resolution analysis that is better or equal compared with the other dedicate algorithms proposed in the state of art.
AB - Infrared Non-Destructive Testing (INDT) is known as an effective and rapid method for nondestructive inspection. It can detect a broad range of near-surface structuring flaws in metallic and composite components. Those flaws are modeled as a smooth contour centered at peaks of stored thermal energy, termed Regions of Interest (ROI). Dedicated methodologies must detect the presence of those ROIs. In this paper, we present a methodology for ROI extraction in INDT tasks. The methodology deals with the difficulties due to the non-uniform heating. The non-uniform heating affects low spatial/frequencies and hinders the detection of relevant points in the image. In this paper, a methodology for ROI extraction in INDT using multi-resolution analysis is proposed, which is robust to ROI low contrast and non-uniform heating. The former methodology includes local correlation, Gaussian scale analysis and local edge detection. In this methodology local correlation between image and Gaussian window provides interest points related to ROIs. We use a Gaussian window because thermal behavior is well modeled by Gaussian smooth contours. Also, the Gaussian scale is used to analyze details in the image using multi-resolution analysis avoiding low contrast, non-uniform heating and selection of the Gaussian window size. Finally, local edge detection is used to provide a good estimation of the boundaries in the ROI. Thus, we provide a methodology for ROI extraction based on multi-resolution analysis that is better or equal compared with the other dedicate algorithms proposed in the state of art.
KW - Gaussian scale decomposition
KW - infrared nondestructive testing
KW - pulse infrared thermography
KW - region of interest
UR - http://www.scopus.com/inward/record.url?scp=84857573851&partnerID=8YFLogxK
U2 - 10.1117/12.912079
DO - 10.1117/12.912079
M3 - Conference contribution
AN - SCOPUS:84857573851
SN - 9780819489425
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Proceedings of SPIE-IS and T Electronic Imaging - Image Processing
T2 - Image Processing: Algorithms and Systems X; and Parallel Processing for Imaging Applications II
Y2 - 23 January 2012 through 25 January 2012
ER -