Moderator Assistant: A Natural Language Generation-Based Intervention to Support Mental Health via Social Media

M. Sazzad Hussain, Juchen Li, Louise A. Ellis, Laura Ospina-Pinillos, Tracey A. Davenport, Rafael A. Calvo, Ian B. Hickie

Producción: Contribución a una revistaArtículorevisión exhaustiva

11 Citas (Scopus)

Resumen

As online mental health support groups become increasingly popular, they require more support from volunteers and trained moderators who help their users through “interventions” (i.e., responding to questions and providing support). We present a system that supports such human interventions using Natural Language Generation (NLG) techniques. The system generates draft responses aimed at reducing moderators’ workload, and improving their efficacy. NLG and human interventions were compared through the ratings of 35 psychology interns. The NLG-based system was capable of generating messages that are grammatically correct with clear language. The system needs improvement, however, moderators can already use it as draft responses.

Idioma originalInglés
Páginas (desde-hasta)304-329
Número de páginas26
PublicaciónJournal of Technology in Human Services
Volumen33
N.º4
DOI
EstadoPublicada - 02 oct. 2015
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Moderator Assistant: A Natural Language Generation-Based Intervention to Support Mental Health via Social Media'. En conjunto forman una huella única.

Citar esto