TY - JOUR
T1 - Modeling the Effect of Irrigation Practices in Flash Floods: A Case Study for the US Southwest
AU - Canon-Barriga, Cesar
AU - Gupta, Hoshin
AU - Valdés, Juan B.
PY - 2012
Y1 - 2012
N2 - Conventional streamflow forecasting does not generally take into account the effects of irrigation practice on the magnitude of floods and flash floods. In this paper, we report the results of a study in which we modeled the impacts of an irrigated area in the US Southwest on streamflow. A calibrated version of the Variable Infiltration Capacity model (VIC), coupled with a routing algorithm, was used to investigate two strategies for irrigating alfalfa in the Beaver Creek watershed (Arizona, USA), for the period January to March of 2010, at a resolution of 1.8 km and hourly time step. By incorporating the effects of irrigation in artificially maintaining soil moisture, model performance is improved without requiring changes in the resolution or quality of input data. Peak flows in the watershed were found to increase by 10 to 500 times, depending on the irrigation scenario, as a function of the strategy and the intensity of rainfall. The study suggests that both flood control and irrigation efficiency could be enhanced by applying improved irrigation techniques.
AB - Conventional streamflow forecasting does not generally take into account the effects of irrigation practice on the magnitude of floods and flash floods. In this paper, we report the results of a study in which we modeled the impacts of an irrigated area in the US Southwest on streamflow. A calibrated version of the Variable Infiltration Capacity model (VIC), coupled with a routing algorithm, was used to investigate two strategies for irrigating alfalfa in the Beaver Creek watershed (Arizona, USA), for the period January to March of 2010, at a resolution of 1.8 km and hourly time step. By incorporating the effects of irrigation in artificially maintaining soil moisture, model performance is improved without requiring changes in the resolution or quality of input data. Peak flows in the watershed were found to increase by 10 to 500 times, depending on the irrigation scenario, as a function of the strategy and the intensity of rainfall. The study suggests that both flood control and irrigation efficiency could be enhanced by applying improved irrigation techniques.
U2 - 10.4236/jwarp.2012.47048
DO - 10.4236/jwarp.2012.47048
M3 - Artículo
JO - JWARP
JF - JWARP
ER -