Model-based fraud detection in growing networks

Pablo Moriano, Jorge Finke

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

People share opinions, exchange information, and trade services on large, interconnected platforms. As with many new technologies these platforms bring with them new vulnerabilities, often becoming targets for fraudsters who try to deceive randomly selected users. To monitor such behavior, the proposed algorithm evaluates structural anomalies that result from local interactions between users. In particular, the algorithm evaluates the degree of membership to well-defined communities of users and the formation of close-knit groups in their neighborhoods. It identifies a set of suspects using a first order approximation of the evolution of the eigenpairs associated to the continuously growing network. Within the set of suspects, the algorithm them locates fraudsters based on deviations from the expected local clustering coefficients. Simulations illustrate how incorporating asymptotic behavior of the structural properties into the design of the algorithm allows us to differentiate between the aggregate dynamics of fraudsters and regular users.

Idioma originalInglés
Título de la publicación alojada53rd IEEE Conference on Decision and Control,CDC 2014
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas6068-6073
Número de páginas6
EdiciónFebruary
ISBN (versión digital)9781479977468
DOI
EstadoPublicada - 2014
Evento2014 53rd IEEE Annual Conference on Decision and Control, CDC 2014 - Los Angeles, Estados Unidos
Duración: 15 dic. 201417 dic. 2014

Serie de la publicación

NombreProceedings of the IEEE Conference on Decision and Control
NúmeroFebruary
Volumen2015-February
ISSN (versión impresa)0743-1546
ISSN (versión digital)2576-2370

Conferencia

Conferencia2014 53rd IEEE Annual Conference on Decision and Control, CDC 2014
País/TerritorioEstados Unidos
CiudadLos Angeles
Período15/12/1417/12/14

Huella

Profundice en los temas de investigación de 'Model-based fraud detection in growing networks'. En conjunto forman una huella única.

Citar esto