Mixed spectral element method for 2D Maxwell's eigenvalue problem

Na Liu, Luis Tobón, Yifa Tang, Qing Huo Liu

Producción: Contribución a una revistaArtículorevisión exhaustiva

17 Citas (Scopus)

Resumen

It is well known that conventional edge elements in solving vector Maxwell's eigenvalue equations by the finite element method will lead to the presence of spurious zero eigenvalues. This problem has been addressed for the first order edge element by Kikuchi by the mixed element method. Inspired by this approach, this paper describes a higher order mixed spectral element method (mixed SEM) for the computation of two-dimensional vector eigenvalue problem of Maxwell's equations. It utilizes Gauss-Lobatto-Legendre (GLL) polynomials as the basis functions in the finite-element framework with a weak divergence condition. It is shown that this method can suppress all spurious zero and nonzero modes and has spectral accuracy. A rigorous analysis of the convergence of the mixed SEM is presented, based on the higher order edge element interpolation error estimates, which fully confirms the robustness of our method. Numerical results are given for homogeneous, inhomogeneous, L-shape, coaxial and dual-inner-conductor cavities to verify the merits of the proposed method.

Idioma originalInglés
Páginas (desde-hasta)458-486
Número de páginas29
PublicaciónCommunications in Computational Physics
Volumen17
N.º2
DOI
EstadoPublicada - 22 ene. 2015

Huella

Profundice en los temas de investigación de 'Mixed spectral element method for 2D Maxwell's eigenvalue problem'. En conjunto forman una huella única.

Citar esto