TY - JOUR
T1 - Mechanisms of monocyte cell death triggered by dengue virus infection
AU - Castillo, Jorge Andrés
AU - Urcuqui-Inchima, Silvio
N1 - Publisher Copyright:
© 2018, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2018/12/1
Y1 - 2018/12/1
N2 - Arthropod-borne viral diseases caused by dengue virus (DENV) are major re-emerging public health problem worldwide. In spite of intense research, DENV pathogenesis is not fully understood and remains enigmatic; however, current evidence suggests that dengue progression is associated with an inflammatory response, mainly in patients suffering from a second DENV infection. Monocytes are one of the main target cells of DENV infection and play an important role in pathogenesis since they are known to produce several inflammatory cytokines that can lead to endothelial dysfunction and therefore vascular leak. In addition, monocytes play an important role in antibody dependent enhancement, infection with consequences in viral load and immune response. Despite the physiological functions of monocytes in immune response, their life span in the bloodstream is very short, and activation of monocytes by DENV infection can trigger different types of cell death. For example, DENV can induce apoptosis in monocytes related with the production of Tumor necrosis factor alpha (TNF-α). Additionally, recent studies have shown that DENV-infected monocytes also exhibit a cell death process mediated by caspase-1 activation together with IL-1 production, referred to as pyroptosis. Taken together, the aforementioned studies strongly depict that multiple cell death pathways may be occurring in monocytes upon DENV-2 infection. This review provides insight into mechanisms of DENV-induced death of both monocytes and other cell types for a better understanding of this process. Further knowledge in cell death induced by DENV will help in the developing novel strategies to prevent disease progression.
AB - Arthropod-borne viral diseases caused by dengue virus (DENV) are major re-emerging public health problem worldwide. In spite of intense research, DENV pathogenesis is not fully understood and remains enigmatic; however, current evidence suggests that dengue progression is associated with an inflammatory response, mainly in patients suffering from a second DENV infection. Monocytes are one of the main target cells of DENV infection and play an important role in pathogenesis since they are known to produce several inflammatory cytokines that can lead to endothelial dysfunction and therefore vascular leak. In addition, monocytes play an important role in antibody dependent enhancement, infection with consequences in viral load and immune response. Despite the physiological functions of monocytes in immune response, their life span in the bloodstream is very short, and activation of monocytes by DENV infection can trigger different types of cell death. For example, DENV can induce apoptosis in monocytes related with the production of Tumor necrosis factor alpha (TNF-α). Additionally, recent studies have shown that DENV-infected monocytes also exhibit a cell death process mediated by caspase-1 activation together with IL-1 production, referred to as pyroptosis. Taken together, the aforementioned studies strongly depict that multiple cell death pathways may be occurring in monocytes upon DENV-2 infection. This review provides insight into mechanisms of DENV-induced death of both monocytes and other cell types for a better understanding of this process. Further knowledge in cell death induced by DENV will help in the developing novel strategies to prevent disease progression.
KW - Apoptosis
KW - Cell death
KW - Dengue virus
KW - Monocytes
KW - Pyroptosis
UR - http://www.scopus.com/inward/record.url?scp=85054329782&partnerID=8YFLogxK
U2 - 10.1007/s10495-018-1488-1
DO - 10.1007/s10495-018-1488-1
M3 - Review article
C2 - 30267240
AN - SCOPUS:85054329782
SN - 1360-8185
VL - 23
SP - 576
EP - 586
JO - Apoptosis
JF - Apoptosis
IS - 11-12
ER -