Lyapunov-Based Anomaly Detection in Highly-Clustered Networks

Diego Ruiz, Jorge Finke

Producción: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

Network formation models explain the dynamics of the structure of connections using mechanisms that operate under different principles for establishing and removing edges. The Jackson–Rogers model is a generic framework that applies the principle of triadic closure to networks that grow by the addition of new nodes and new edges over time. Past work describes the limit distribution of the in-degree of the nodes based on a continuous-time approximation. Here, we introduce a discrete-time approach of the dynamics of the in- and out-degree distributions of a variation of the model. Furthermore, we characterize the limit distributions and the expected value of the average degree as equilibria, and prove that the equilibria are asymptotically stable. Finally, we use the stability properties of the model to propose a detection criterion for anomalies in the edge formation process.

Idioma originalInglés
Páginas (desde-hasta)1127-1146
Número de páginas20
PublicaciónJournal of Statistical Physics
Volumen172
N.º4
DOI
EstadoPublicada - 01 ago. 2018

Huella

Profundice en los temas de investigación de 'Lyapunov-Based Anomaly Detection in Highly-Clustered Networks'. En conjunto forman una huella única.

Citar esto