Long-short term memory applied to energy management systems in microgrids

David Uribe, Victor Ramirez, Luis Polanco, Victor Cuervo, Luis Marin

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

In this research paper, we implemented a Long-Short Term Memory neural network for climate variable prediction and employed the interior point method to optimize the energy management of a microgrid. Our objective was to reduce the dependence on diesel generators and minimize the associated costs. By prioritizing technological alternatives over exclusive reliance on diesel generators, we achieved a substantial 10% reduction in diesel generator costs in comparison to the energy management-free model.

Idioma originalInglés
Título de la publicación alojada2023 10th International Conference on Soft Computing and Machine Intelligence, ISCMI 2023
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas222-226
Número de páginas5
ISBN (versión digital)9798350359374
DOI
EstadoPublicada - 2023
Publicado de forma externa
Evento10th International Conference on Soft Computing and Machine Intelligence, ISCMI 2023 - Virtual, Online, México
Duración: 25 nov. 202326 nov. 2023

Serie de la publicación

Nombre2023 10th International Conference on Soft Computing and Machine Intelligence, ISCMI 2023

Conferencia

Conferencia10th International Conference on Soft Computing and Machine Intelligence, ISCMI 2023
País/TerritorioMéxico
CiudadVirtual, Online
Período25/11/2326/11/23

Huella

Profundice en los temas de investigación de 'Long-short term memory applied to energy management systems in microgrids'. En conjunto forman una huella única.

Citar esto