Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography

John A. Lewis, Francisco Javier Quintero Cortes, Yuhgene Liu, John C. Miers, Ankit Verma, Bairav S. Vishnugopi, Jared Tippens, Dhruv Prakash, Thomas S. Marchese, Sang Yun Han, Chanhee Lee, Pralav P. Shetty, Hyun Wook Lee, Pavel Shevchenko, Francesco De Carlo, Christopher Saldana, Partha P. Mukherjee, Matthew T. McDowell

Producción: Contribución a una revistaArtículorevisión exhaustiva

226 Citas (Scopus)

Resumen

Despite progress in solid-state battery engineering, our understanding of the chemo-mechanical phenomena that govern electrochemical behaviour and stability at solid–solid interfaces remains limited compared to at solid–liquid interfaces. Here, we use operando synchrotron X-ray computed microtomography to investigate the evolution of lithium/solid-state electrolyte interfaces during battery cycling, revealing how the complex interplay among void formation, interphase growth and volumetric changes determines cell behaviour. Void formation during lithium stripping is directly visualized in symmetric cells, and the loss of contact that drives current constriction at the interface between lithium and the solid-state electrolyte (Li10SnP2S12) is quantified and found to be the primary cause of cell failure. The interphase is found to be redox-active upon charge, and global volume changes occur owing to partial molar volume mismatches at either electrode. These results provide insight into how chemo-mechanical phenomena can affect cell performance, thus facilitating the development of solid-state batteries.

Idioma originalInglés
Páginas (desde-hasta)503-510
Número de páginas8
PublicaciónNature Materials
Volumen20
N.º4
DOI
EstadoPublicada - abr. 2021
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography'. En conjunto forman una huella única.

Citar esto