Linearity, Persistence and Testing Semantics in the Asynchronous Pi-Calculus

Diletta Cacciagrano, Flavio Corradini, Jesús Aranda, Frank D. Valencia

Producción: Contribución a una revistaArtículorevisión exhaustiva

11 Citas (Scopus)

Resumen

In [C. Palamidessi, V. Saraswat, F. Valencia and B. Victor. On the Expressiveness of Linearity vs Persistence in the Asynchronous Pi Calculus. LICS 2006:59-68, 2006] the authors studied the expressiveness of persistence in the asynchronous π-calculus (Aπ) wrt weak barbed congruence. The study is incomplete because it ignores the issue of divergence. In this paper, we present an expressiveness study of persistence in the asynchronous π-calculus (Aπ) wrt De Nicola and Hennessy's testing scenario which is sensitive to divergence. Following [C. Palamidessi, V. Saraswat, F. Valencia and B. Victor. On the Expressiveness of Linearity vs Persistence in the Asynchronous Pi Calculus. LICS 2006:59-68, 2006], we consider Aπ and three sub-languages of it, each capturing one source of persistence: the persistent-input calculus (PIAπ), the persistent-output calculus (POAπ) and persistent calculus (PAπ). In [C. Palamidessi, V. Saraswat, F. Valencia and B. Victor. On the Expressiveness of Linearity vs Persistence in the Asynchronous Pi Calculus. LICS 2006:59-68, 2006] the authors showed encodings from Aπ into the semi-persistent calculi (i.e., POAπ and PIAπ) correct wrt weak barbed congruence. In this paper we prove that, under some general conditions, there cannot be an encoding from Aπ into a (semi)-persistent calculus preserving the must testing semantics.

Idioma originalInglés
Páginas (desde-hasta)59-84
Número de páginas26
PublicaciónElectronic Notes in Theoretical Computer Science
Volumen194
N.º2
DOI
EstadoPublicada - 16 ene. 2008
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Linearity, Persistence and Testing Semantics in the Asynchronous Pi-Calculus'. En conjunto forman una huella única.

Citar esto