Land cover classification of Andean sub-basins in Colombia based on Sentinel-2 satellite images and deep learning

Darwin A. Arrechea-Castillo, Yady T. Solano-Correa, Julián F. Muñoz-Ordóñez, Yineth V. Camacho-De Angulo, Estiven Sánchez-Barrera, Apolinar Figueroa-Casas, Edgar L. Pencue-Fierro

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

The Las Piedras River sub-basin, located in the department of Cauca, Colombia, is very important for the region, especially for the capital (Popayán). This is because this sub-basin contributes around 68.17% of the water supply for the city. To guarantee continuity of this resource, good management of the Water Ecosystem Services (WES) must be carried out. To this aim, periodic environmental assessments of the water resource in the region are necessary. Such Environmental Assessment WES (EAWES) is possible when an accurate and up-to-date land cover map is available. However, obtaining such a product is quite complex due to the heterogeneous conditions both in the land cover and orography of the studied region. Another impacting factor is the weather conditions of the region, that make it difficult to access the areas and/or to acquire information for land cover mapping. This research proposes a robust model, based on deep learning and Sentinel-2 satellite images, able to perform a land cover classification with reliable accuracy (>90%) at a low computational cost. A variant of a LeNet Convolutional Neural Network has been used together with features extracted from original spectral bands, radiometric indices and a digital elevation map. Preliminary results show an Overall Accuracy of 95.49% in the training data and 96.51% in the validation one.

Idioma originalInglés
Título de la publicación alojadaGeospatial Informatics XIII
EditoresKannappan Palaniappan, Gunasekaran Seetharaman, Joshua D. Harguess
EditorialSPIE
ISBN (versión digital)9781510661646
DOI
EstadoPublicada - 2023
Publicado de forma externa
EventoGeospatial Informatics XIII 2023 - Orlando, Estados Unidos
Duración: 04 may. 2023 → …

Serie de la publicación

NombreProceedings of SPIE - The International Society for Optical Engineering
Volumen12525
ISSN (versión impresa)0277-786X
ISSN (versión digital)1996-756X

Conferencia

ConferenciaGeospatial Informatics XIII 2023
País/TerritorioEstados Unidos
CiudadOrlando
Período04/05/23 → …

Huella

Profundice en los temas de investigación de 'Land cover classification of Andean sub-basins in Colombia based on Sentinel-2 satellite images and deep learning'. En conjunto forman una huella única.

Citar esto